Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.786
Filtrar
1.
Oncol Res ; 32(4): 659-678, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560572

RESUMO

Background: IQGAP3 plays a crucial role in regulating cell proliferation, division, and cytoskeletal organization. Abnormal expression of IQGAP3 has been linked to various tumors, but its function in glioma is not well understood. Methods: Various methods, including genetic differential analysis, single-cell analysis, ROC curve analysis, Cox regression, Kaplan-Meier analysis, and enrichment analysis, were employed to analyze the expression patterns, diagnostic potential, prognostic implications, and biological processes involving IQGAP3 in normal and tumor tissues. The impact of IQGAP3 on immune infiltration and the immune microenvironment in gliomas was evaluated using immunofluorescence. Additionally, the cBioPortal database was used to analyze copy number variations and mutation sites of IQGAP3. Experimental validation was also performed to assess the effects of IQGAP3 on glioma cells and explore underlying mechanisms. Results: High IQGAP3 expression in gliomas is associated with an unfavorable prognosis, particularly in wild-type IDH and 1p/19q non-codeleted gliomas. Enrichment analysis revealed that IQGAP3 is involved in regulating the cell cycle, PI3K/AKT signaling, p53 signaling, and PLK1-related pathways. Furthermore, IQGAP3 expression may be closely related to the immunosuppressive microenvironment of glioblastoma. BRD-K88742110 and LY-303511 are potential drugs for targeting IQGAP3 in anti-glioma therapy. In vitro experiments showed that downregulation of IQGAP3 inhibits the proliferation and migration of glioma cells, with the PLK1/PI3K/AKT pathway potentially playing a crucial role in IQGAP3-mediated glioma progression. Conclusion: IQGAP3 shows promise as a valuable biomarker for diagnosis, prognosis, and immunotherapeutic strategies in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Prognóstico , Neoplasias Encefálicas/patologia , Variações do Número de Cópias de DNA , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Glioma/patologia , Microambiente Tumoral/genética , Proteínas Ativadoras de GTPase
2.
Methods Mol Biol ; 2797: 91-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570454

RESUMO

Oncogenic mutations in KRAS typically impact the GAP-mediated and intrinsic GTP hydrolysis activity resulting in elevated levels of cellular KRAS-GTP. The development of biochemical assays for GTPase activity provides an opportunity to quantitatively measure the impact of these mutations on GTP hydrolysis. Here we describe a biochemical assay that measures the release of free phosphate upon hydrolysis of the GTP nucleotide and allows the measurement of intrinsic or GAP-stimulated GTP hydrolysis by KRAS. This assay can be used to measure GTPase activity under single turnover conditions.


Assuntos
Proteínas Ativadoras de GTPase , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas p21(ras)/genética , Hidrólise , Mutação , Cinética , Guanosina Trifosfato , Proteínas Ativadoras de GTPase/metabolismo
3.
Medicine (Baltimore) ; 103(16): e37702, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640279

RESUMO

RATIONALE: Hereditary hearing loss is known to exhibit a significant degree of genetic heterogeneity. Herein, we present a case report of a novel mutation in the tenascin-C (TNC) gene in Chinese patients with nonsyndromic hearing loss (NSHL). PATIENT CONCERNS: This includes a young deaf couple and their 2-year-old baby. DIAGNOSES: Based on the clinical information, hearing test, metagenomic next-generation sequencing (mNGS), Sanger sequencing, protein function and structure analysis, and model prediction, in our case, the study results revealed 2 heterozygous mutations in the TNC gene (c.2852C>T, p.Thr951Ile) and the TBC1 domain family member 24 (TBC1D24) gene (c.1570C>T, p.Arg524Trp). These mutations may be responsible for the hearing loss observed in this family. Notably, the heterozygous mutations in the TNC gene (c.2852C>T, p.Thr951Ile) have not been previously reported in the literature. INTERVENTIONS: Avoid taking drugs that can cause deafness, wearing hearing AIDS, and cochlear implants. OUTCOMES: Regular follow-up of family members is ongoing. LESSONS: The genetic diagnosis of NSHL holds significant importance as it helps in making informed treatment decisions, providing prognostic information, and offering genetic counseling for the patient's family.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Pré-Escolar , Surdez/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva/genética , Mutação , China , Linhagem , Proteínas Ativadoras de GTPase/genética
4.
PLoS One ; 19(4): e0294227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564630

RESUMO

Current evidence suggests that DEP domain containing 1 (DEPDC1) has an important effect on non-small-cell lung cancer (NSCLC). However, the diagnostic value and the regulatory function within NSCLC are largely unclear. This work utilized publicly available databases and in vitro experiments for exploring, DEPDC1 expression, clinical features, diagnostic significance and latent molecular mechanism within NSCLC. According to our results, DEPDC1 was remarkably upregulated in the tissues of NSCLC patients compared with non-carcinoma tissues, linked with gender, stage, T classification and N classification based on TCGA data and associated with smoking status and stage according to GEO datasets. Meanwhile, the summary receiver operating characteristic (sROC) curve analysis result showed that DEPDC1 had a high diagnostic value in NSCLC (AUC = 0.96, 95% CI: 0.94-0.98; diagnostic odds ratio = 99.08, 95%CI: 31.91-307.65; sensitivity = 0.89, 95%CI: 0.81-0.94; specificity = 0.92, 95%CI: 0.86-0.96; positive predictive value = 0.94, 95%CI: 0.89-0.98; negative predictive value = 0.78, 95%CI: 0.67-0.90; positive likelihood ratio = 11.77, 95%CI: 6.11-22.68; and negative likelihood ratio = 0.12, 95%CI: 0.06-0.22). Subsequently, quantitative real-time PCR (qRT-PCR) and western blotting indicated that DEPDC1 was high expressed in NSCLC cells. According to the in vitro MTS and apoptotic assays, downregulated DEPDC1 expression targeting P53 signaling pathway inhibited the proliferation of NSCLC cells while promoting apoptosis of NSCLC cells. Moreover, DEPDC1 was significantly correlated with immune cell infiltrating levels in NSCLC based on TCGA data, which were primarily associated with T cells CD4 memory activated, macrophages M1, B cells memory, mast cells resting, T cells regulatory, monocytes, and T cells CD4 memory resting. Compared with the group with high expression of DEPDC1, the group with low expression level had higher scores for immune checkpoint inhibitors (ICIs) treatment. GSEA confirmed that DEPDC1 was involved in gene expression and tumor-related signaling pathways. Finally, DEPDC1 and its associated immune-related genes were shown to be enriched in 'receptor ligand activity', 'external side of plasma membrane', 'regulation of innate immune response', and 'Epstein-Barr virus infection' pathways. The present study demonstrates that DEPDC1 may contribute to NSCLC tumorigenesis and can be applied as the biomarker for diagnosis and immunology.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Infecções por Vírus Epstein-Barr , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Herpesvirus Humano 4/metabolismo , Transdução de Sinais , Proteínas de Neoplasias/genética , Proteínas Ativadoras de GTPase/metabolismo
5.
Nat Commun ; 15(1): 3468, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658571

RESUMO

Metabolism has recently emerged as a major target of genes implicated in the evolutionary expansion of human neocortex. One such gene is the human-specific gene ARHGAP11B. During human neocortex development, ARHGAP11B increases the abundance of basal radial glia, key progenitors for neocortex expansion, by stimulating glutaminolysis (glutamine-to-glutamate-to-alpha-ketoglutarate) in mitochondria. Here we show that the ape-specific protein GLUD2 (glutamate dehydrogenase 2), which also operates in mitochondria and converts glutamate-to-αKG, enhances ARHGAP11B's ability to increase basal radial glia abundance. ARHGAP11B + GLUD2 double-transgenic bRG show increased production of aspartate, a metabolite essential for cell proliferation, from glutamate via alpha-ketoglutarate and the TCA cycle. Hence, during human evolution, a human-specific gene exploited the existence of another gene that emerged during ape evolution, to increase, via concerted changes in metabolism, progenitor abundance and neocortex size.


Assuntos
Proteínas Ativadoras de GTPase , Glutamato Desidrogenase , Neocórtex , Neocórtex/metabolismo , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Neocórtex/citologia , Humanos , Animais , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Ácidos Cetoglutáricos/metabolismo , Neuroglia/metabolismo , Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Camundongos , Ciclo do Ácido Cítrico/genética , Feminino
6.
PLoS One ; 19(4): e0295103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574162

RESUMO

The ADP-ribosylation factors (Arfs) constitute a family of small GTPases within the Ras superfamily, with a distinguishing structural feature of a hypervariable N-terminal extension of the G domain modified with myristate. Arf proteins, including Arf1, have roles in membrane trafficking and cytoskeletal dynamics. While screening for Arf1:small molecule co-crystals, we serendipitously solved the crystal structure of the non-myristoylated engineered mutation [L8K]Arf1 in complex with a GDP analogue. Like wild-type (WT) non-myristoylated Arf1•GDP, we observed that [L8K]Arf1 exhibited an N-terminal helix that occludes the hydrophobic cavity that is occupied by the myristoyl group in the GDP-bound state of the native protein. However, the helices were offset from one another due to the L8K mutation, with a significant change in position of the hinge region connecting the N-terminus to the G domain. Hypothesizing that the observed effects on behavior of the N-terminus affects interaction with regulatory proteins, we mutated two hydrophobic residues to examine the role of the N-terminal extension for interaction with guanine nucleotide exchange factors (GEFs) and GTPase Activating Proteins (GAPs. Different than previous studies, all mutations were examined in the context of myristoylated Arf. Mutations had little or no effect on spontaneous or GEF-catalyzed guanine nucleotide exchange but did affect interaction with GAPs. [F13A]myrArf1 was less than 1/2500, 1/1500, and 1/200 efficient as substrate for the GAPs ASAP1, ARAP1 and AGAP1; however, [L8A/F13A]myrArf1 was similar to WT myrArf1. Using molecular dynamics simulations, the effect of the mutations on forming alpha helices adjacent to a membrane surface was examined, yet no differences were detected. The results indicate that lipid modifications of GTPases and consequent anchoring to a membrane influences protein function beyond simple membrane localization. Hypothetical mechanisms are discussed.


Assuntos
Proteínas Ativadoras de GTPase , Miristatos , Proteínas Ativadoras de GTPase/metabolismo , Mutação Puntual , Ácido Mirístico , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo
7.
Turk J Gastroenterol ; 35(2): 102-111, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38454241

RESUMO

BACKGROUND/AIMS: The purpose of this study is to screen the feature genes related to gut microflora and explore the role of the genes in predicting the prognosis of patients with gastric cancer. MATERIALS AND METHODS: We downloaded the gene profile of gastric cancer from the University of California Santa Cruz, the gut microflora related to gastric cancer from The Cancer Microbiome Atlas. The GSE62254 dataset was downloaded from National Center for Biotechnology Information Gene Expression Omnibus as a validation dataset. A correlation network between differentially expressed genes and gut microflora was constructed using Cytoscape. The optimized prognostic differentially expressed genes were identified through least absolute shrinkage and selection operator (LASSO) algorithm and univariate Cox regression analysis. The risk score model was established and then measured via Kaplan-Meier and area under the curve. Finally, the nomogram model was constructed according to the independent clinical factors, which was evaluated using C-index. RESULTS: A total of 754 differentially expressed genes and 8 gut microflora were screened, based on which we successfully constructed the correlation network. We obtained 9 optimized prognostic differentially expressed genes, including HSD17B3, GNG7, CHAD, ARHGAP8, NOX1, YY2, GOLGA8A, DNASE1L3, and ABCA8. Moreover, Kaplan-Meier curves indicated the risk score model correctly predicted the prognosis of gastric cancer in both University of California Santa Cruz and GSE62254 dataset (area under the curve >0.8; area under the curve >0.7). Finally, we constructed the nomogram, in which the C index of 1, 3, and 5 years was 0.824, 0.772, and 0.735 representing that the nomogram was consistent with the actual situation. CONCLUSIONS: These results indicate the 9 differentially expressed genes related to gut microflora might predict the survival time of patients with gastric cancer. Both risk signature and nomogram could effectively predict the prognosis for patients with gastric cancer.


Assuntos
Microbioma Gastrointestinal , Neoplasias Gástricas , Humanos , Prognóstico , Microbioma Gastrointestinal/genética , Neoplasias Gástricas/genética , Nomogramas , Algoritmos , Fatores de Transcrição , Proteínas Ativadoras de GTPase
8.
Cells ; 13(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474413

RESUMO

Cardiomyocytes rely on proper mitochondrial homeostasis to maintain contractility and achieve optimal cardiac performance. Mitochondrial homeostasis is controlled by mitochondrial fission, fusion, and mitochondrial autophagy (mitophagy). Mitophagy plays a particularly important role in promoting the degradation of dysfunctional mitochondria in terminally differentiated cells. However, the precise mechanisms by which this is achieved in cardiomyocytes remain opaque. Our study identifies GRAF1 as an important mediator in PINK1-Parkin pathway-dependent mitophagy. Depletion of GRAF1 (Arhgap26) in cardiomyocytes results in actin remodeling defects, suboptimal mitochondria clustering, and clearance. Mechanistically, GRAF1 promotes Parkin-LC3 complex formation and directs autophagosomes to damaged mitochondria. Herein, we found that these functions are regulated, at least in part, by the direct binding of GRAF1 to phosphoinositides (PI(3)P, PI(4)P, and PI(5)P) on autophagosomes. In addition, PINK1-dependent phosphorylation of Parkin promotes Parkin-GRAF1-LC3 complex formation, and PINK1-dependent phosphorylation of GRAF1 (on S668 and S671) facilitates the clustering and clearance of mitochondria. Herein, we developed new phosphor-specific antibodies to these sites and showed that these post-translational modifications are differentially modified in human hypertrophic cardiomyopathy and dilated cardiomyopathy. Furthermore, our metabolic studies using serum collected from isoproterenol-treated WT and GRAF1CKO mice revealed defects in mitophagy-dependent cardiomyocyte fuel flexibility that have widespread impacts on systemic metabolism. In summary, our study reveals that GRAF1 co-regulates actin and membrane dynamics to promote cardiomyocyte mitophagy and that dysregulation of GRAF1 post-translational modifications may underlie cardiac disease pathogenesis.


Assuntos
Proteínas Ativadoras de GTPase , Mitofagia , Miócitos Cardíacos , Fosfatos de Fosfatidilinositol , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Actinas , Proteínas Ativadoras de GTPase/metabolismo , Mitofagia/fisiologia , Miócitos Cardíacos/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
9.
Front Immunol ; 15: 1372113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529286

RESUMO

Background: Glioma, an aggressive brain tumor, poses a challenge in understanding the mechanisms of treatment resistance, despite promising results from immunotherapy. Methods: We identified genes associated with immunotherapy resistance through an analysis of The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) databases. Subsequently, qRT-PCR and western blot analyses were conducted to measure the mRNA and protein levels of TBC1 Domain Family Member 1 (TBC1D1), respectively. Additionally, Gene Set Enrichment Analysis (GSEA) was employed to reveal relevant signaling pathways, and the expression of TBC1D1 in immune cells was analyzed using single-cell RNA sequencing (scRNA-seq) data from GEO database. Tumor Immune Dysfunction and Exclusion (TIDE) database was utilized to assess T-cell function, while Tumor Immunotherapy Gene Expression Resource (TIGER) database was employed to evaluate immunotherapy resistance in relation to TBC1D1. Furthermore, the predictive performance of molecules on prognosis was assessed using Kaplan-Meier plots, nomograms, and ROC curves. Results: The levels of TBC1D1 were significantly elevated in tumor tissue from glioma patients. Furthermore, high TBC1D1 expression was observed in macrophages compared to other cells, which negatively impacted T cell function, impaired immunotherapy response, promoted treatment tolerance, and led to poor prognosis. Inhibition of TBC1D1 was found to potentially synergistically enhance the efficacy of immunotherapy and prolong the survival of cancer patients with gliomas. Conclusion: Heightened expression of TBC1D1 may facilitate an immunosuppressive microenvironment and predict a poor prognosis. Blocking TBC1D1 could minimize immunotherapy resistance in cancer patients with gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Imunoterapia , Humanos , Biomarcadores , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/imunologia , Glioma/terapia , Proteínas Ativadoras de GTPase/genética , Prognóstico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
10.
Diabetes Res Clin Pract ; 210: 111643, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38548111

RESUMO

AIMS: The study aimed to explore the potential causal link between gestational diabetes mellitus (GDM) and preeclampsia (PE) using a bidirectional mendelian randomization (MR) analysis. MATERIALS: We conducted a bidirectional MR analysis to investigate the causal relationship between GDM and PE. Data from public genome-wide association studies (GWAS) for GDM and PE were obtained from the FinnGen consortium. Various MR methods were employed, including inverse-variance weighted (IVW), MR-Egger, and sensitivity analyses. Additionally, a knowledge-based approach identified genes underlying this potential connection. RESULTS: The IVW method revealed a lack of significant association between GDM and PE (OR: 1.04, 95 % CI: 0.96-1.14; p = 0.275). Conversely, IVW analysis indicated a causal connection from PE to GDM (OR: 1.14, 95 % CI: 1.06-1.23; p < 0.001). Molecular pathway analysis identified 20 key genes, including ASAP2, central to the PE-GDM relationship. Tissue enrichment analysis showed pertinent gene expression in significant tissues. Moreover, lower ASAP2 expression was detected in PE patients' placentas. CONCLUSIONS: Our bidirectional MR analysis offers evidence supporting a causal link between PE and GDM, elucidating their interconnected pathogenesis. Genetic and knowledge-based insights facilitate a deeper comprehension of these complex pregnancy complications.


Assuntos
Diabetes Gestacional , Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Diabetes Gestacional/genética , Pré-Eclâmpsia/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Causalidade , Proteínas Ativadoras de GTPase
11.
Eur J Surg Oncol ; 50(4): 108241, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452717

RESUMO

BACKGROUND: Cervical cancer holds the highest morbidity and mortality rates among female reproductive tract tumors. However, the curative outcomes for patients with persistent, recurrent, or metastatic cervical cancer remain unsatisfactory. There is a lack of comprehensive prognostic indicators for cervical cancer. This study aims to develop a model that evaluates the prognosis of cervical cancer in combination of high-throughput sequencing and various machine learning algorithms. METHODS: In this study, we combined two single-cell RNA sequencing (scRNA-seq) projects and TCGA data for cervical cancer to obtain shared differentially expressed genes (DEGs). A LASSO regression and several learners were applied for signature feature selection. Six machine learning algorithms including Linear Discriminant Analysis, Naive Bayes, K Nearest Neighbors, Decision Tree, Random Forest, and eXtreme Gradient Boosting were utilized to construct a prognostic model for cervical cancer. External validation was conducted using the CGCI-HTMCP-CC dataset, and the accuracy of the model was assessed through ROC curve analysis. RESULTS: The results demonstrated the successful construction of a prognostic model based on DEGs from bulk- and scRNA-seq data. Ten genes CXCL8, DLC1, GRN, MPLKIP, PRDX1, RUNX1, SNX3, TFRC, UBE2V2, and UQCRC1 were screened by feature selection and applied for model construction. Random Forest exhibited the best performance in predicting the risk of cervical cancer. Patients in the high-risk group presented worse overall survival compared to those in the low-risk group. CONCLUSION: Conclusively, our model based on DEGs from bulk-seq and scRNA-seq data effectively evaluates the prognosis of cervical cancer and provides valuable insights for comprehensive clinical management.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Teorema de Bayes , Prognóstico , Sequenciamento de Nucleotídeos em Larga Escala , Aprendizado de Máquina , Proteínas Ativadoras de GTPase , Proteínas Supressoras de Tumor , Proteínas Adaptadoras de Transdução de Sinal
12.
Hum Genet ; 143(3): 455-469, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526744

RESUMO

Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.


Assuntos
Proteínas Ativadoras de GTPase , Heterozigoto , Microcefalia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Humanos , Microcefalia/genética , Feminino , Masculino , Pré-Escolar , Proteínas Ativadoras de GTPase/genética , Criança , Transtornos do Neurodesenvolvimento/genética , Mutação com Perda de Função , Animais , Deficiências do Desenvolvimento/genética , Camundongos , Lactente , Fenótipo , Adolescente
13.
Development ; 151(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38546045

RESUMO

The primary cilium decorates most eukaryotic cells and regulates tissue morphogenesis and maintenance. Structural or functional defects of primary cilium result in ciliopathies, congenital human disorders affecting multiple organs. Pathogenic variants in the ciliogenesis and planar cell polarity effectors (CPLANE) genes FUZZY, INTU and WDPCP disturb ciliogenesis, causing severe ciliopathies in humans and mice. Here, we show that the loss of Fuzzy in mice results in defects of primary cilia, accompanied by increased RhoA activity and excessive actin polymerization at the basal body. We discovered that, mechanistically, Fuzzy interacts with and recruits the negative actin regulator ARHGAP35 (also known as p190A RhoGAP) to the basal body. We identified genetic interactions between the two genes and found that a mutant ArhGAP35 allele increases the severity of phenotypic defects observed in Fuzzy-/- mice. Based on our findings, we propose that Fuzzy regulates ciliogenesis by recruiting ARHGAP35 to the basal body, where the latter likely restricts actin polymerization and modifies the actin network. Our study identifies a mechanism whereby CPLANE proteins control both actin polymerization and primary cilium formation.


Assuntos
Actinas , Ciliopatias , Proteínas Ativadoras de GTPase , Camundongos , Humanos , Animais , Actinas/metabolismo , Cílios/metabolismo , Polimerização
14.
Mol Plant Pathol ; 25(3): e13448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502297

RESUMO

Ras GTPase-activating proteins (Ras GAPs) act as negative regulators for Ras proteins and are involved in various signalling processes that influence cellular functions. Here, the function of four Ras GAPs, UvGap1 to UvGap4, was identified and analysed in Ustilaginoidea virens, the causal agent of rice false smut disease. Disruption of UvGAP1 or UvGAP2 resulted in reduced mycelial growth and an increased percentage of larger or dumbbell-shaped conidia. Notably, the mutant ΔUvgap1 completely lost its pathogenicity. Compared to the wild-type strain, the mutants ΔUvgap1, ΔUvgap2 and ΔUvgap3 exhibited reduced tolerance to H2 O2 oxidative stress. In particular, the ΔUvgap1 mutant was barely able to grow on the H2 O2 plate, and UvGAP1 was found to influence the expression level of genes involved in reactive oxygen species synthesis and scavenging. The intracellular cAMP level in the ΔUvgap1 mutant was elevated, as UvGap1 plays an important role in maintaining the intracellular cAMP level by affecting the expression of phosphodiesterases, which are linked to cAMP degradation in U. virens. In a yeast two-hybrid assay, UvRas1 and UvRasGef (Ras guanyl nucleotide exchange factor) physically interacted with UvGap1. UvRas2 was identified as an interacting partner of UvGap1 through a bimolecular fluorescence complementation assay and affinity capture-mass spectrometry analysis. Taken together, these findings suggest that the UvGAP1-mediated Ras pathway is essential for the development and pathogenicity of U. virens.


Assuntos
Hypocreales , Oryza , Proteínas Ativadoras de GTPase/genética , Oryza/microbiologia , Proteínas Ativadoras de ras GTPase , Doenças das Plantas/microbiologia
15.
Nat Commun ; 15(1): 2053, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448435

RESUMO

SARS-CoV-2, the causative agent of COVID-19, uses the host endolysosomal system for entry, replication, and egress. Previous studies have shown that the SARS-CoV-2 virulence factor ORF3a interacts with the lysosomal tethering factor HOPS complex and blocks HOPS-mediated late endosome and autophagosome fusion with lysosomes. Here, we report that SARS-CoV-2 infection leads to hyperactivation of the late endosomal and lysosomal small GTP-binding protein Rab7, which is dependent on ORF3a expression. We also observed Rab7 hyperactivation in naturally occurring ORF3a variants encoded by distinct SARS-CoV-2 variants. We found that ORF3a, in complex with Vps39, sequesters the Rab7 GAP TBC1D5 and displaces Rab7 from this complex. Thus, ORF3a disrupts the GTP hydrolysis cycle of Rab7, which is beneficial for viral production, whereas the Rab7 GDP-locked mutant strongly reduces viral replication. Hyperactivation of Rab7 in ORF3a-expressing cells impaired CI-M6PR retrieval from late endosomes to the trans-Golgi network, disrupting the biosynthetic transport of newly synthesized hydrolases to lysosomes. Furthermore, the tethering of the Rab7- and Arl8b-positive compartments was strikingly reduced upon ORF3a expression. As SARS-CoV-2 egress requires Arl8b, these findings suggest that ORF3a-mediated hyperactivation of Rab7 serves a multitude of functions, including blocking endolysosome formation, interrupting the transport of lysosomal hydrolases, and promoting viral egress.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Lisossomos , Hidrolases , Fatores de Virulência , Proteínas Ativadoras de GTPase/genética
16.
BMC Med Genomics ; 17(1): 70, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443923

RESUMO

BACKGROUND: We aimed to identify some potential biomarkers for elderly osteoporosis (OP) by integral analysis of lncRNA and mRNA expression data. METHODS: A total of 8 OP cases and 5 healthy participants were included in the study. Fasting peripheral venous blood samples were collected from individuals, and total RNA was extracted. RNA-seq library was prepared and sequenced on the Illumina HiSeq platform. Differential gene expression analysis was performed using "DESeq2" package in R language. Functional enrichment analysis was conducted using the "clusterProfiler" package, and the cis- and trans-regulatory relationships between lncRNA and target mRNA were analyzed by the lncTar software. A protein-protein interaction (PPI) network was constructed using the STRING database, and hub genes were identified through the MCODE plugin in Cytoscape. RESULTS: We identified 897 differentially expressed lncRNAs (DELs) and 1366 differentially expressed genes (DEGs) between normal and OP samples. After co-expression network analysis and cis-trans regulatory genes analysis, we identified 69 candidate genes regulated by lncRNAs. Then we further screened 7 genes after PPI analysis. The target gene DOCK4, trans-regulated by two lncRNAs, was found to be significantly upregulated in OP samples. Additionally, 4 miRNAs were identified as potential regulators of DOCK4. The potential diagnostic value of DOCK4 and its two trans-regulatory lncRNAs was supported by ROC analysis, indicating their potential as biomarkers for OP. CONCLUSION: DOCK4 is a potential biomarker for elderly osteoporosis diagnostic. It is identified to be regulated by two lncRNAs and four miRNAs.


Assuntos
MicroRNAs , Osteoporose , RNA Longo não Codificante , Idoso , Humanos , RNA Longo não Codificante/genética , Biomarcadores , Bases de Dados Factuais , Osteoporose/genética , Proteínas Ativadoras de GTPase
17.
Mol Biol Cell ; 35(4): ar58, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446619

RESUMO

GTPases cycle between active GTP bound and inactive GDP bound forms. Exchange of GDP for GTP is catalyzed by guanine nucleotide exchange factors (GEFs). GTPase activating proteins (GAPs) accelerate GTP hydrolysis, to promote the GDP bound form. We reported that the RacGEF, PIX-1, is required for assembly of integrin adhesion complexes (IAC) in striated muscle of Caenorhabditis elegans. In C. elegans, IACs are found at the muscle cell boundaries (MCBs), and bases of sarcomeric M-lines and dense bodies (Z-disks). Screening C. elegans mutants in proteins containing RhoGAP domains revealed that loss of function of rrc-1 results in loss of IAC components at MCBs, disorganization of M-lines and dense bodies, and reduced whole animal locomotion. RRC-1 localizes to MCBs, like PIX-1. The localization of RRC-1 at MCBs requires PIX-1, and the localization of PIX-1 requires RRC-1. Loss of function of CED-10 (Rac) shows lack of PIX-1 and RRC-1 at MCBs. RRC-1 exists in a complex with PIX-1. Transgenic rescue of rrc-1 was achieved with wild type RRC-1 but not RRC-1 with a missense mutation in a highly conserved residue of the RhoGAP domain. Our results are consistent with RRC-1 being a RhoGAP for the PIX pathway in muscle.


Assuntos
Caenorhabditis elegans , Proteínas Ativadoras de GTPase , Animais , Caenorhabditis elegans/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Sarcômeros/metabolismo , Guanosina Trifosfato/metabolismo , Integrinas/metabolismo
18.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396745

RESUMO

GATOR1 (GAP Activity TOward Rag 1) is an evolutionarily conserved GTPase-activating protein complex that controls the activity of mTORC1 (mammalian Target Of Rapamycin Complex 1) in response to amino acid availability in cells. Genetic mutations in the GATOR1 subunits, NPRL2 (nitrogen permease regulator-like 2), NPRL3 (nitrogen permease regulator-like 3), and DEPDC5 (DEP domain containing 5), have been associated with epilepsy in humans; however, the specific effects of these mutations on GATOR1 function and mTORC1 regulation are not well understood. Herein, we report that epilepsy-linked mutations in the NPRL2 subunit of GATOR1, NPRL2-L105P, -T110S, and -D214H, increase basal mTORC1 signal transduction in cells. Notably, we show that NPRL2-L105P is a loss-of-function mutation that disrupts protein interactions with NPRL3 and DEPDC5, impairing GATOR1 complex assembly and resulting in high mTORC1 activity even under conditions of amino acid deprivation. Furthermore, our studies reveal that the GATOR1 complex is necessary for the rapid and robust inhibition of mTORC1 in response to growth factor withdrawal or pharmacological inhibition of phosphatidylinositol-3 kinase (PI3K). In the absence of the GATOR1 complex, cells are refractory to PI3K-dependent inhibition of mTORC1, permitting sustained translation and restricting the nuclear localization of TFEB, a transcription factor regulated by mTORC1. Collectively, our results show that epilepsy-linked mutations in NPRL2 can block GATOR1 complex assembly and restrict the appropriate regulation of mTORC1 by canonical PI3K-dependent growth factor signaling in the presence or absence of amino acids.


Assuntos
Epilepsia , Fosfatidilinositol 3-Quinases , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proteínas Ativadoras de GTPase/metabolismo , Mutação , Fosfatidilinositol 3-Quinase/metabolismo , Aminoácidos/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Nitrogênio/metabolismo
19.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38323995

RESUMO

In autophagy, autophagosomes deliver the lumenal contents to lysosomes for degradation via autophagosome-lysosome fusion. In contrast, autophagosome outer membrane components were recycled via autophagosomal components recycling (ACR), which is mediated by the recycler complex. The recycler complex, composed of SNX4, SNX5, and SNX17, cooperate with the dynein-dynactin complex to mediate ACR. However, how ACR is regulated remains unknown. Here, we found that Rab32 family proteins localize to autolysosomes and are required for ACR, rather than other autophagosomal or lysosomal Rab proteins. The GTPase activity of Rab32 family proteins, governed by their guanine nucleotide exchange factor and GTPase-activating protein, plays a key role in regulating ACR. This regulation occurs through the control of recycler complex formation, as well as the connection between the recycler-cargo and dynactin complex. Together, our study reveals an unidentified Rab32 family-dependent regulatory mechanism for ACR.


Assuntos
Autofagossomos , Dineínas , Proteínas Ativadoras de GTPase , Nexinas de Classificação , Proteínas rab de Ligação ao GTP , Humanos , Citoesqueleto de Actina/metabolismo , Autofagossomos/metabolismo , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Lisossomos , Proteínas rab de Ligação ao GTP/metabolismo
20.
Clin Transl Med ; 14(2): e1591, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385857

RESUMO

BACKGROUND: Metastasis accounts for the majority of deaths among patients with colorectal cancer (CRC). Here, the regulatory role of tumour-associated macrophages (TAMs) in CRC metastasis was explored. METHODS: Immunohistochemical (IHC) analysis of the TAM biomarker CD163 was conducted to evaluate TAM infiltration in CRC. Transwell assays and an ectopic liver metastasis model were established to evaluate the metastatic ability of tumour cells. RNA sequencing (RNA-seq) and liquid chromatography-mass spectrometry (LC-MS) were applied to identify the differentially expressed genes and proteins in CRC cells and in TAM-derived extracellular vesicles (EVs). Cholesterol content measurement, a membrane fluidity assay and filipin staining were performed to evaluate cholesterol efflux in CRC cells. RESULTS: Our results showed that TAM infiltration is positively correlated with CRC metastasis. TAMs can facilitate the migration and invasion of MC-38 and CT-26 cells via EVs. According to the RNA-seq data, TAM-EVs increase cholesterol efflux and enhance membrane fluidity in CRC cells by regulating ABCA1 expression, thus affecting the motility of CRC cells. Mechanistically, DOCK7 packaged in TAM-EVs can activate RAC1 in CRC cells and subsequently upregulate ABCA1 expression by phosphorylating AKT and FOXO1. Moreover, IHC analysis of ABCA1 in patients with liver-metastatic CRC indicated that ABCA1 expression is significantly greater in metastatic liver nodules than in primary CRC tumours. CONCLUSIONS: Overall, our findings suggest that DOCK7 delivered via TAM-EVs could regulate cholesterol metabolism in CRC cells and CRC cell metastasis through the RAC1/AKT/FOXO1/ABCA1 axis. DOCK7 could thus be a new therapeutic target for controlling CRC metastasis.


Assuntos
Neoplasias do Colo , Vesículas Extracelulares , Humanos , Proteínas Proto-Oncogênicas c-akt , Macrófagos Associados a Tumor , Colesterol , Proteínas rac1 de Ligação ao GTP/genética , Fatores de Troca do Nucleotídeo Guanina , Proteínas Ativadoras de GTPase , Transportador 1 de Cassete de Ligação de ATP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...